Пару слов о воображении
Автор решил начать новую книгу не с истории, а с более фундаментальных дисциплин – с философии и математики. А для «затравки» он предлагает Вашему вниманию статью «Александр Гайфуллин: Мы живем в многомерном мире» (источник: https://scientificrussia.ru/articles/my-zhivem-v-mnogomernom-mire). «Наш мир вовсе не трехмерен, нам только так кажется. Именно этот факт подтверждают фундаментальные исследования Александра Александровича Гайфуллина, члена-корреспондента Российской академии наук, профессора мехмата МГУ, ведущего научного сотрудника Математического института им. В.А. Стеклова РАН. За серию работ, связанных со сложными математическими построениями, он получил президентскую премию для молодых ученых. — Александр, сложно даже обращаться к вам по имени-отчеству, настолько вы молоды. И в то же время — профессор, член-корреспондент… Наверное, вы самый юный член академии наук? — Насколько я знаю, нет, но один из самых молодых. Доктором наук я стал в 26, а в академию меня избрали в 32 — на последних, осенних выборах. Надо сказать, математика — вообще наука молодых. — Потому что мозг так устроен: чем моложе, тем лучше функционирует? — Возможно. Хотя известны случаи, когда люди и в зрелом возрасте получали очень хорошие результаты. Но вообще в математике много примеров, когда самыми сильными становятся первые работы. В других науках — скажем, в химии, в физике, особенно в экспериментальной, крайне важно время, когда человеку нужно наработать какие- то навыки, научиться методам работы. Эксперименты часто занимают длительное время, поэтому, как правило, в таких областях люди получают серьезные результаты позже. — Вы стали лауреатом премии президента для молодых ученых. За какие исследования? — Я занимаюсь этой тематикой уже пять лет. Речь идет о цикле работ по так называемым изгибаемым многогранникам. Это очень интересный геометрический объект. Знаете, как дети клеят многогранники из картона? Они чертят грани, вырезают развертку, а потом начинают складывать и склеивать. Так можно сделать, скажем, куб. А дальше возникает вопрос: вот мы замкнутый многогранник склеили, но будет ли это жесткая конструкция или она может каким-то образом деформироваться с изменением углов между гранями? Это и называется изгибанием. Чтобы лучше себе это представить, можно, как говорят математики, спуститься на размерность вниз и вместо многогранников в трехмерном пространстве посмотреть на многоугольники на плоскости. Если мы возьмем треугольник и сделаем у него жесткие стороны и шарниры в вершинах, он все равно останется жесткой фигурой, и мы никак не сможем его деформировать. А если возьмем четырехугольник, пятиугольник или многоугольник с большим числом сторон, то у него всегда будут присутствовать нетривиальные деформации. Например, квадрат можно превратить в ромб и т.д. Однако если вернуться к многогранникам, там ситуация другая. Среди них изгибаемых очень мало, и их трудно строить.
Первый пример изгибаемого многогранника был построен только в 1977 г. Его автор — американский математик Роберт Коннелли. До этого предполагали, что таких многогранников вообще не может быть. Дело в том, что еще в 1813 г. знаменитый французский математик Огюстен Луи Коши (это была одна из первых его математических работ) доказал, что если многогранник выпуклый, то у него никогда не будет изгибания. А если он не выпуклый? Как выяснилось спустя полтора века, изгибание возможно. Более того, когда такие изгибаемые многогранники начали строить, оказалось, что они обладают массой удивительных свойств. — Каких же? — Сначала их обнаружили экспериментально. Скажем, такая удивительная вещь: многогранник изгибается, деформируется, а объем у него остается постоянным. Сначала были мысли, что, возможно, это совпадение. Стали смотреть другие примеры — а там тоже объем постоянный. И появилась гипотеза, что объем любого изгибаемого многогранника постоянен в процессе изгибания. Ее назвали очень красиво — гипотезой о кузнечных мехах. Кузнечные мехи — это приспособление, которое нагнетает воздух в кузнице. Возник вопрос: можно ли сделать подобного рода приспособление, нагнетающее воздух, из изгибаемого многогранника? Это было бы возможно, только если бы нашелся многогранник, который изменяет свой объем. Гипотеза о кузнечных мехах долго оставалась открытой, и доказал ее в 90-х гг. прошлого века российский математик И.Х. Сабитов. Моя работа заключалась в построении теории многомерных изгибаемых многогранников. Мы живем в нашем обычном трехмерном пространстве, но на самом деле математики изучают и многомерные пространства, и это очень важно не только для математики, но и для различных ее приложений — физики, механики, астрофизики и других областей.
— Что показали ваши исследования? — Мы посмотрели многоугольники на плоскости, потом в трехмерном пространстве, и тут возник очередной вопрос: а если мы будем изучать аналогичные объекты, те же изгибаемые многогранники, в многомерных пространствах произвольной размерности? И оказалось, что здесь нам почти ничего не известно. На рубеже XX-XXI вв. были построены отдельные примеры четырехмерных изгибаемых многогранников, но дальше пойти не удавалось. В больших размерностях вообще не было ни одного примера. Мне удалось, во-первых, построить примеры изгибаемых многогранников в пространствах всех размерностей. Во-вторых, был вопрос, связанный с гипотезой о кузнечных мехах и теоремой И.Х. Сабитова, что объем изгибаемого многогранника всегда постоянен. Были все основания предполагать, что, может быть, то же самое верно и в «старших» размерностях. Доказательство, которое он дал, очень хорошо работало в трехмерной ситуации, но совершенно не действовало в многомерной. Мне удалось придумать абсолютно новый подход, который позволил доказать гипотезу о кузнечных мехах, то есть утверждение о постоянстве объема в процессе изгибания многогранников для многогранников произвольной размерности. Наше пространство, как говорят математики, нулевой кривизны. А бывают пространства искривленные. Легче всего себе представлять положительно искривленные пространства. Простейший пример — поверхность сферы, например поверхность Земли, на которой мы живем. То есть наша земная геометрия не евклидова, не плоская, а сферическая. А бывает еще пространство отрицательной кривизны — это плоскость Лобачевского и вся его знаменитая геометрия, которая возникла в XIX в. Это двумерные пространства, но при этом точно так же есть пространства положительной и отрицательной кривизны всех размерностей. И в них тоже можно изучать изгибаемые многогранники. И оказалось, что там ситуация очень любопытная. Если кривизна положительная, то гипотеза кузнечных мехов неверна. Есть примеры изгибаемых многогранников, которые изменяют объем в процессе изгибания.
В нашей обычной размерности такой пример был построен В. А. Александровым, ведущим научным сотрудником Института математики им. С.Л. Соболева СО РАН, а во всех больших размерностях — это мои результаты. А самое любопытное вот что. Если мы находимся в пространстве отрицательной кривизны, оказывается, что если размерность нечетная — 3. 5, 7 и т.д., то гипотеза о кузнечных мехах верна и объем постоянный. — А если размерность четная, то неверна и объем меняется? — Нет, если четная, то никто не знает. Это вопрос, оставшийся на сегодня открытым… — Вы говорите, что работы в этом направлении были начаты в 70-е гг. прошлого века. Значит, здесь уже могли быть поставлены и решены какие-то прикладные задачи? — Да, началось все с изучения изгибаемых многогранников, но эта наука развивалась в разных направлениях. Вообще, это часть науки о шарнирных механизмах, у которой много приложений, возникающих в очень многих инженерных конструкциях. Или, скажем, есть такая замечательная конструкция — плоскость, разбитая на множество параллелограммов, которые могут очень компактно складываться в один. Она известна с древних времен из японского оригами, а сейчас называется миура-ори в честь японского астрофизика Коре Миуры, который предложил использовать такую конструкцию для складывания солнечных батарей. — Безусловно, такие конструкции можно создавать и для построения временного жилья, передвижных госпиталей и научных лабораторий — например на Севере, для освоения новых земель. — Фантазировать можно сколько угодно, но в области применения я не специалист. Однако мне хочется сказать, что кроме таких «наивных» вариантов, как использование на практике тех или иных изгибаемых поверхностей, не менее важны возможности более глубоких и неочевидных применений не самих изгибаемых многогранников, а математических методов, возникших при их исследовании. Вообще часто бывает, что математические результаты используются каким-то способом, изначально неожиданным. История показывает, что часто ожидают применения в одном месте, а возникает оно совершенно в другом.
Возвращаясь к изгибаемым многогранникам, хотелось бы отметить их связь с часто встречающимися на практике задачами такого типа. Имеется набор точек в пространстве, и расстояния между одними парами этих точек мы знаем (например, сумели измерить), а между другими — нет. Можно ли узнать все недостающие расстояния, рассчитать их? Эта задача сводится к изучению определенного вида систем алгебраических уравнений, и такого же рода системы уравнений возникают в задачах об изгибаемых многогранниках. Поэтому здесь, несомненно, могут быть полезны методы, развитые в теории изгибаемых многогранников. — И здесь области применения безграничные — от земных задач до дальнего космоса. — Именно так. — Каким образом все это строится? С помощью компьютерных программ? — Как ни странно, нет. Компьютерная модель создается, как правило, уже впоследствии. Чертить это на бумаге тоже проблематично — там же все плоское. А клеить такие сложные фигуры из картона я, признаться, не очень умею. — Неужели вы строите все это в голове? – И в голове тоже. Но на самом деле эта задача довольно быстро переходит из геометрической (хотя геометрическая интуиция здесь очень важна) в алгебраическую. — Некое математическое описание в виде формул? — Да. Потом, когда есть формулы, их можно загрузить в компьютер и получить объект. — Картинка в компьютере и то, что до этого было в голове, совпадают? — Не всегда. — Вы будете продолжать работать над этой темой? Чего хотите достичь в этом направлении? — Для меня эта область не совсем родная. Изначально я специализировался в другой области математики — алгебраической топологии. Топология — это наука об описании геометрического объекта с точки зрения свойств, которые не меняются при его деформациях. А алгебраическая топология стремится дать такое описание в алгебраических терминах, то есть, например, сопоставить каждой поверхности некоторый алгебраический объект и показать, что этот объект различен, скажем, для сферы и для поверхности бублика, и таким образом показать, что они не могут быть превращены одна в другую при помощи непрерывной деформации. Эта наука начала формироваться еще в конце XIX в., но с тех пор существенно развилась и усложнилась.
— Почему же вы стали заниматься этими многогранниками? — Моим научным руководителем в университете был член-корреспондент РАН В.М. Бухштабер, и моей темой была как раз алгебраическая топология. А еще когда я учился на первом курсе, мне очень повезло, что семинарские занятия по математическому анализу в нашей группе вел профессор мехмата И.Х. Сабитов, о котором я уже говорил. Так что об изгибаемых многогранниках и его результатах в этой области я узнал уже тогда. И вот уже в 2011 г., когда я только что защитил докторскую диссертацию, Иджад Хакович мне сказал, что советует заняться этой задачей, потому что ему кажется, что там возможно применить мои топологические знания. — И он оказался прав? — Абсолютно. Так что часть задачи решена, остальное, надеюсь, впереди. «Я считаю, что с точки зрения вклада в фундаментальную науку результаты этой работы совершенно выдающиеся. Они уже оказали влияние на развитие математики и еще окажут. Мы можем перечислить крупных математиков, которые пытались решить эти проблемы в течение многих лет, но всякий раз попадали в тупик. Александр, конечно, опирался на результаты предшественников, но он нашел новые методы, которые позволили прорваться сначала в четырехмерный мир, а потом и в мир большего количества размерностей» (Бухштабер). Дело в том, что проблема изгибаемых многогранников, как ее ставили классики, базировалась на нашем трехмерном мире, на повседневном опыте. Но если мы возьмем фундаментальную работу Анри Пуанкаре, основателя нашей науки — топологии, то он начинает с того, что классическая механика имеет дело с трехмерным миром. Однако если вы хотите описать динамику объекта и свойства системы в целом, то здесь нельзя обойтись без многомерных пространств, где участвуют не только координаты, но и скорость, и ускорение, и т.д. То есть от трехмерного пространства надо переходить к многомерному. Понимание этого факта послужило стимулом для создания и развития топологии.
«Фундаментальный вклад Александра в том, что он сначала перенес классические задачи, связанные с трехмерным миром, в четырехмерный мир, а потом развил методы, применимые и для более высоких размерностей. До него многомерные аналоги классических задач об изгибаемых многогранниках казались недоступными. Вот почему в формулировке премии президента написано «за решение фундаментальных задач»: Александр разработал новые методы, которые позволили решить многомерные аналоги классических задач. На первый взгляд кажется, что все это — игра нашего воображения. На самом деле мы с вами живем не в трехмерном мире, а в многомерном. Трехмерный мир — это очень просто и очевидно. Вот, например, известно, что сейчас вы находитесь в Математическом институте в такой-то аудитории. Найти вас — это трехмерная задача. Но если я хочу за вами следить, мне нужна информация о вашей динамике, понимание, в какой точке пространства вы будете через какое-то время. Это уже четырехмерная задача. Фазовое пространство — это понятие, на котором базируются фундаментальные результаты всей современной математики. Мы с вами живем в многомерном мире, где наши координаты — не только данные о местоположении, но и многие другие сведения о нашем состоянии. Сейчас здесь возникли абсолютно уникальные возможности благодаря современной вычислительной технике и новым средствам связи. Та же система навигации использует многомерные пространства. Я уже много лет занимаюсь не только топологией, но и ее приложениями к задачам физики и химии и каждый раз чувствую то преимущество, которое дает мне топология. По сравнению с человеком, который считает, что живет в трехмерном мире, у меня значительно более богатый инструментарий. Саша — мой ученик, а бывших учеников не бывает. Я горжусь достигнутыми им результатами, поскольку это настоящий прорыв в науке. Хорошо, когда получен результат, которым можно воспользоваться немедленно. В то же время фундаментальные результаты имеют особую ценность. Оказывается, в нашем мире все совсем не так, как кажется на первый взгляд. Во-первых, он реально многомерен, а во-вторых, в этом многомерном мире, когда вы работаете с определенными объектами, необходимо знать запреты, которые накладывает этот мир. И тот человек, который эти запреты открыл, входит в историю математики, потому что дал всему человечеству новое понимание условий существования в этом мире. И в-третьих, зная эти запреты, мы можем поставить замечательную задачу — построить нечто самое хорошее, чтобы использовать это для блага человечества. Не сомневаюсь, что таких построений и приобретений будет еще очень много» (Козлов).
— Хочу сказать несколько слов о молодых людях, работающих в нашем институте. Мы всегда стремились привлекать на работу самых способных, самых талантливых. Наш институт небольшой, чуть более ста научных сотрудников. И поэтому появление каждого нового человека для нас событие. Таким событием было и появление Саши Гайфуллина, который теперь уже член-корреспондент РАН, профессор. Хорошо помню, как мы его принимали на работу. Не скрою, это была моя идея. Он тогда работал в Московском университете, на моем родном механико-математическом факультете, на одной из трех геометрических кафедр. У нас в институте вообще много выпускников мехмата МГУ. Зная, что на нашем математическом небосклоне появился молодой способный парень, я, посоветовавшись с коллегами, решил его, во что бы то ни стало, забрать к нам. — Насколько я знаю, А.А. Гайфуллин продолжает преподавать в МГУ. — Да, но теперь на условиях совместительства. — И ведь он не единственный ваш лауреат президентской премии. — Да, он третий. Первым был А.Г. Кузнецов — наш замечательный алгебраист, тоже избранный членом-корреспондентом академии наук за свои выдающиеся достижения в области алгебры и алгебраической геометрии. А еще этой награды удостоен Н.Н. Андреев — талантливый популяризатор математики, заведующий лабораторией популяризации и пропаганды математики. — Но вернемся к А.А. Гайфуллину. — Он действительно отличный геометр. Характерная особенность его научной работы — он стремится все сделать до конца, изящно и красиво. Я вспоминаю в связи с этим слова великого немецкого математика Гаусса: «Если что-то недоделано, это значит — ничего не сделано». Так вот, Саша все доводит до конца. Взять хотя бы его блестящий цикл работ по гипотезе кузнечных мехов, состоящей в том, что объемы изгибаемых многогранников, как правило, не меняются (во всяком случае, если речь идет о привычном нам евклидовом пространстве). Он рассмотрел многомерный случай и случай пространства положительной и отрицательной кривизны. Вывел особенности этой задачи, связанной со знаком кривизны, что тоже очень важно. Довел дело до логического конца. И это самое ценное. — Валерий Васильевич, ваш институт — серьезное научное учреждение. Но я слышала, что вы еще и веселиться умеете.
— Не то слово! У нас на старый Новый год есть традиция: мы собираемся все вместе и проводим интеллектуальные задания, конкурсы. И у нас обязательно есть Дед Мороз и Снегурочка. Так вот, Саша великолепно исполнил роль главного зимнего волшебника, оказался очень артистичным и убедительным, при том, что внешне он кажется человеком стеснительным. Для меня это было неожиданно, но очень приятно. Поэтому если захотите настоящих чудес, приходите к нам». Зачем автор привел здесь данную статью? А вот зачем. Дело в том, что мы с Вами живем не в трехмерном пространстве, как Вы думаете, а в четырехмерном континууме «пространство-время», как принято говорить сегодня среди ученых. Но и это – полбеды, как только мы начинаем двигаться с ускорением, мы тут же попадаем в пятимерное пространство. Другими словами, мерность пространства вокруг нас есть функция нашего личного физического состояния, или по-другому – человек сам определяет, в каком пространстве он находится. Ну а мир вокруг нас изначально многомерен, и сколько в нем измерений, знает лишь один Бог (Мироздание). Автор в прошлой книге уже касался вопроса замкнутых систем, и пришел к выводу, что абсолютно замкнутых систем в нашем мире просто не бывает. Человек живет на Земле и привык считать ее замкнутой системой, и до начала космических полетов, так оно и было. Однако сегодня наши космические корабли уже «бороздят просторы» пока еще только нашей Солнечной системы, но недалек тот день, когда и нашей Вселенной. Впрочем, чтобы попасть в более мерное пространство, космические корабли нам совсем не нужны, это может сделать любой человек на Земле и в любое время. И двигаться с ускорением для этого совсем не обязательно, достаточно изменить состояние своего сознания, и любой человек сможет путешествовать в пространстве любой мерности (было бы воображение). И судя по всему, у Александра Гайфуллина такое воображение есть. Вот давайте и мы с Вами потренируемся этому. Согласно Википедии, размерность — это количество независимых параметров, необходимых для описания состояния объекта, или количество степеней свободы системы (в которой находится данный объект – авт.).
Другими словами, как ни крути, а впереди всегда стоит объект, и только после него — система, в которой он находится. Предлагаю Вашему вниманию еще одну интересную статью — «10 измерений реальности: просто и понятно о теории струн» от «econet» (источник: revolverlab.com 297340). «Самая большая проблема у теоретических физиков — как объединить все фундаментальные взаимодействия (гравитационное, электромагнитное, слабое и сильное) в единую теорию. Теория суперструн как раз претендует на роль Теории Всего. Но оказалось, что самое удобное количество измерений, необходимое для работы этой теории — целых десять (девять из которых — пространственные, и одно — временное)! Если измерений больше или меньше, математические уравнения дают иррациональные результаты, уходящие в бесконечность — сингулярность. Следующий этап развития теории суперструн — М-теория — насчитала уже одиннадцать размерностей. А еще один ее вариант — F-теория — все двенадцать. И это вовсе не усложнение. F-теория описывает 12-мерное пространство более простыми уравнениями, чем М-теория — 11-мерное. Конечно, теоретическая физика не зря называется теоретической. Все ее достижения существуют пока что только на бумаге. Так, чтобы объяснить почему же мы можем перемещаться только в трехмерном пространстве, ученые заговорили о том, как несчастным остальным измерениям пришлось скукожиться в компактные сферы на квантовом уровне. Если быть точными, то не в сферы, а в пространства Калаби-Яу. Это такие трехмерные фигурки, внутри которых свой собственный мир с собственной размерностью. Таких фигурок известно более 470 миллионов. Которая из них соответствует нашей действительности, в данный момент вычисляется. Нелегко это — быть теоретическим физиком. Да, это кажется немного притянутым за уши. Но может, именно этим и объясняется, почему квантовый мир так отличается от воспринимаемого нами. Начнем сначала. Нулевое измерение — это точка. У нее нет размеров. Двигаться некуда, никаких координат для обозначения местонахождения в таком измерении не нужно. Поставим рядом с первой точкой вторую и проведем через них линию. Вот вам и первое измерение. У одномерного объекта есть размер — длина, но нет ни ширины, ни глубины. Движение в рамках одномерного пространства очень ограничено, ведь возникшее на пути препятствие не обойдешь. Чтобы определить местонахождение на этом отрезке, понадобится всего одна координата.
Поставим рядом с отрезком точку. Чтобы уместить оба эти объекта, нам потребуется уже двумерное пространство, обладающее длиной и шириной, то есть, площадью, однако без глубины, то есть, объема. Расположение любой точки на этом поле определяется двумя координатами. Третье измерение возникает, когда мы добавляем к этой система третью ось координат. Нам, жителям трехмерной вселенной, очень легко это представить. А теперь представим, что некий объемный объект движется в третьем измерении, которое пересекает этот двумерный мир. Для стороннего наблюдателя, это движение выразится в смене двумерных проекций объекта на плоскости. Для него каждая из двумерных проекций будет видеться одномерным отрезком с загадочно переменчивой длиной, возникающим в непредсказуемом месте и также непредсказуемо исчезающим. Попытки просчитать длину и место возникновения таких объектов с помощью законов физики двумерного пространства, обречены на провал. Мы, обитатели трехмерного мира, видим все двумерным. Только перемещение предмета в пространстве позволяет нам почувствовать его объем. Любой многомерный объект мы увидим также двумерным, но он будет удивительным образом меняться в зависимости от нашего с ним взаиморасположения или времени. Сегодня принято изображать, как гравитация искривляет пространство-время. Искривляет… куда? Точно ни в одно из знакомых нам измерений. А квантовое туннелирование, то есть, способность частицы исчезать в одном месте и появляться совсем в другом, причем за препятствием, сквозь которое в наших реалиях она не смогла бы проникнуть, не проделав в нем дыру? А черные дыры? А что, если все эти и другие загадки современной науки объясняются тем, что геометрия пространства совсем не такая, какой мы привыкли ее воспринимать? Время добавляет к нашей Вселенной еще одну координату. Для того, чтобы вечеринка состоялась, нужно знать не только в каком баре она произойдет, но и точное время этого события. Исходя из нашего восприятия, у времени есть отправная точка, а движение осуществляется только в одном направлении — из прошлого в будущее. Причем реально только настоящее. Ни прошлое, ни будущее не существуют, как не существуют завтраки и ужины с точки зрения офисного клерка в обеденный перерыв. Но теория относительности с этим не согласна. С ее точки зрения, время — это полноценное измерение. Все события, которые существовали, существуют и будут существовать, одинаково реальны, как реален морской пляж, независимо от того, где именно мечты о шуме прибоя захватили нас врасплох. Наше восприятие — это всего лишь что-то вроде прожектора, который освещает на прямой времени какой-то отрезок.
До сих пор все теории работали с большим количеством пространственных измерений, а временное всегда было единственным. Но почему пространство допускает появление множественных размерностей для пространства, но время только одно? Пока ученые не смогут ответить на этот вопрос, гипотеза о двух или более временных пространствах будет казаться очень привлекательной всем философам и фантастам. Да и физикам, чего уж там. Скажем, американский астрофизик Ицхак Барс корнем всех бед с Теорией Всего видит как раз упущенное из виду второе временное измерение. В качестве умственного упражнения, попробуем представить себе мир с двумя временами. Каждое измерение существует отдельно. Это выражается в том, что если мы меняем координаты объекта в одной размерности, координаты в других могут оставаться неизменными. Так, если вы движетесь по одной временной оси, которая пересекает другую под прямым углом, то в точке пересечения время вокруг остановится. Все, что Нео нужно было сделать — это разместить свою одномерную временную ось перпендикулярно временной оси пуль. Сущий пустяк, согласитесь. На самом деле все намного сложнее. Точное время во вселенной с двумя временными измерениями будет определяться двумя значениями. Слабо представить себе двумерное событие? То есть, такое, которое протяженно одновременно по двум временным осям? Вполне вероятно, что в таком мире потребуются специалисты по составлению карты времени, как картографы составляют карты двухмерной поверхности земного шара. Что еще отличает двумерное пространство от одномерного? Возможность обходить препятствие, например. Это уже совсем за границами нашего разума. Житель одномерного мира не может представить себе как это — завернуть за угол. Да и что это такое — угол во времени? Кроме того, в двумерном пространстве можно путешествовать вперед, назад, да хоть по диагонали. Я без понятия как это — пройти через время по диагонали. Я уж не говорю о том, что время лежит в основе многих физических законов, и как изменится физика Вселенной с появлением еще одного временного измерения, невозможно представить. Но размышлять об этом так увлекательно! Другие измерения еще не открыты, и существуют только в математических моделях. Но можно попробовать представить их так.
Как мы выяснили раньше, мы видим трехмерную проекцию четвертого (временного) измерения Вселенной. Другими словами, каждый момент существования нашего мира — это точка (аналогично нулевому измерению) на отрезке времени от Большого взрыва до Конца Света. Те из вас, кто читал про перемещения во времени, знают какую важную роль в них играет искривление пространственно-временного континуума. Вот это и есть пятое измерение — именно в нем «сгибается» четырехмерное пространство-время, чтобы сблизить две какие-то точки на этой прямой. Без этого путешествие между этими точками было бы слишком длительным, или вообще невозможным. Грубо говоря, пятое измерение аналогично второму — оно перемещает «одномерную» линию пространства-времени в «двумерную» плоскость со всеми вытекающими в виде возможности завернуть за угол. Наши особо философско-настроенные читатели чуть ранее, наверное, задумались о возможности свободной воли в условиях, где будущее уже существует, но пока еще не известно. Наука на этот вопрос отвечает так: вероятности. Будущее — это не палка, а целый веник из возможных вариантов развития событий. Какой из них осуществится – узнаем, когда доберемся. Каждая из вероятностей существует в виде «одномерного» отрезка на «плоскости» пятого измерения. Как быстрее всего перескочить из одного отрезка на другой? Правильно — согнуть эту плоскость, как лист бумаги. Куда согнуть? И снова правильно — в шестом измерении, которое придает всей этой сложной структуре «объем». И, таким образом, делает ее, подобно трехмерному пространству, «законченной», новой точкой. Седьмое измерение — это новая прямая, которая состоит из шестимерных «точек». Что представляет собой какая-либо другая точка на этой прямой? Весь бесконечный набор вариантов развития событий в другой вселенной, образованной не в результате Большого Взрыва, а в других условиях, и действующей по другим законам. То есть, седьмое измерение — это бусы из параллельных миров. Восьмое измерение собирает эти «прямые» в одну «плоскость». А девятое можно сравнить с книгой, которая уместила в себя все «листы» восьмого измерения. Это совокупность всех историй всех вселенных со всеми законами физики и всеми начальными условиями. Снова точка.
Тут мы упираемся в предел. Чтобы представить себе десятое измерение, нам нужна прямая. А какая может быть другая точка на этой прямой, если девятое измерение уже покрывает все, что только можно себе представить, и даже то, что и представить невозможно? Получается, девятое измерение — это не очередная отправная точка, а финальная — для нашей фантазии, во всяком случае. Теория струн утверждает, что именно в десятом измерении совершают свои колебания струны — базовые частицы, из которых состоит все. Если десятое измерение содержит себе все вселенные и все возможности, то струны существуют везде и все время. В смысле, каждая струна существует и в нашей вселенной, и любой другой. В любой момент времени. Сразу. Круто, да?» Считайте эту статью нашим первым упражнением по развитию воображения. И не забывайте, что субъект (то есть, Вы, уважаемый читатель) всегда стоит на первом месте, а Земля, на которой мы с Вами проживаем, — лишь на втором. А где в этом ряду находится наша Вселенная, одному Богу известно. Впрочем, та же логика абсолютно справедлива и для всей Вселенной в целом, и с ее точки зрения, ни Солнца, ни Земли, и уж подавно человека, и вовсе не видать. Ничего ни попишешь, «в нашем мире все относительно». И когда Вы называете какого-то другого человека плохим или хорошим, он является таковым только по сравнению с Вами. Другими словами, именно Вы, и именно в мире, в котором Вы сами проживаете, являетесь главным объектом для сравнения всего остального, сущего в нем. Иначе говоря, Вы – «Точка Омеги». «Точка Омега — термин, введенный французским философом и теологом, священником-иезуитом Пьером Тейяром де Шарденом для обозначения состояния наиболее организованной сложности и одновременно наивысшего сознания, к которому, по его мнению, эволюционирует Вселенная. Понятие рассматривается в трактате Тейяра де Шардена «Феномен человека». Любая энергия, согласно Тейяру де Шардену, является духовной по своей природе. В каждом элементе фундаментальная энергия разделена на два компонента: тангенциальная энергия связывает друг с другом элементы одного порядка (одинаковой сложности и внутренней сосредоточенности); радиальная энергия направляет элемент ко все более сложному и внутренне сосредоточенному состоянию». Ну и хватит на сегодня.